MICRO-SCALE PREPARATION OF 4-THIOURACIL LABELLED WITH ⁴⁻C OR
14_{C +} 35_S,

J. Seda, L. I. Votruba and *R.* **Tykva. Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague, Czechoslovakia. Received on February 26th** *1974.*

SUMMARY

A selective and quantitative method ms developed for *a micro*scale preparation of 4-thiouracil-2- 14 C by the direct thiation of uracil-2-¹⁴C. From pyridine, dioxane, and tetralin as the thi*ation solvents, the best yield was obtained in dioxane (96.6% of 4-thiouracil-2- ¹⁴CI. The simultaneous labelling with I4C* + *35S was obtained by isotope exchange with elemental sulfur-* 35 *S on* refluxing in dimethylformamide. The present procedure may be used *as a general method* for *the preparation* of *I4C* or *I4C* + *35S labelled bases* of *nucleic acids* of *both the pyrimidine and purine type as well as the corresponding nucleosides and nucleotides.*

INTRODUCTION

The direct thiation with phosphorus pentasulfide was widely used in the preparation of unlabelled nucleosidq and nucleotide thioderivatives⁽¹⁻⁴⁾ as well as the thioderivati**vee of the corresponding bases of both the pyrimidine and purine type** *(5,6).*

A detailed analysis of the thiation method has been now effected in the present paper in connection with the pre-

paration of 14^c labelled thiouracil; this compound is the object of **a** growing interest in the biochemistry of nucleic acids^(7,8). Special attention was paid to the influence of working conditions on the course and yields of the thiation, because of unsatisfactory yields with the commonly used pyridine⁽⁹⁾, dioxane⁽¹⁰⁾ and tetralin^(6,11) as reaction media. The additional labelling with **35S was** effected by isotope exchange with elemental sulfur- 35 S in boiling dimethylformamide: this general method was developed in our Laboratory some time ago **(12).**

As it may be inferred from the earlier papers **(1-6),** the present experimental procedure can be used as a general method in the micro-scale preparation of 14 C-labelled bases of nucleic acids of both the pyrimidine and purine type, as well as their nucleosides and nucleotidee, or in the simultaneous labelling of these substances with the ¹⁴C and ³⁵S radionuclides.

EXPERIMENTAL

Uracil (Lachema, Czechoslovakia) **we8** purif **i.ed** by repeated recrystallisations from water; phosphorus pentasulfide Pure (Lachema) was purified by extraction with carbon disulfide in **a** Soxhlet thimble and dried in vacuo; dioxane Analytical Grade (Lachema) was used directly; pyridine Analytical Grade (Hajduki, Poland) was dried over sodium hydroxide pellets and distilled; tetralin Pure (Lachema) was dried over sodium hydroxide pellets and distilled under diminished pressure; dirnethylformamide Analytical Grade (Lachema) **was** dried over phosphorus pentoxide and distilled under diminished pressure;

Micro-Preparation of 4-ThiouraciZ I4C or I4C + *35S* **337**

uracil-2-14C (55,4 mCi/mM) was obtained from the Institute for Research, Production and Application of Radioisotopes, Czechoslovakia; elemental sulfd5S (**4.9 mCi/mg) was purchased from** V/O **Izotop, Soviet Union,**

Descending paper chromatography was performed on Whatman No 3 paper in the solvent systems S_1 , 1-butanol - acetic acid **water (10:1:3), and S₂, 2-propanol - concentrated aqueous** ammonia - water (7:1:2). Two-dimensional ascending thin-layer **chromatography was performed on ready-for-use indicator con**taining Silufol UV₂₄₅ foils (Kavalier, Czechoslovakia) with the use of the solvent system S₁ for one direction and S₃, **1-butanol** - **2.5% aqueous ammonia (86:14), for the other direction,**

Column chromatography was carried out on Bio-Gel P2 100- -200 mesh (Balbiochem, U,S,A,); column length, 760 mm3 diameter, 17 mm; **flow rate, Oo20-0,22** ml **of 00002 Y triethylammonium hydrogen carbonate per min, The course of the column chromatography was checked by a simultaneous continuous radioactivity and ultraviolet absorption measurement on a device according to Tykva and Griinberger (13).**

In model experiments, the reaction mixture containing 1.0 mg (8.9 micromol) of uracil-2-¹⁴C (0.2 mCi/mM), phosphorus **pentasulfide, and 0.3 ml of the solvent was refluxed in a** micro test tube equipped with a reflux condenser and protected from **the atmospheric moiature by a drying tube, !he molar ratio of uracil to phosphorus pentawlride was in the range** from 2:1 to 1:4. Samples (volume, 10 ,ul) of the reaction mix**ture were withdrawn in time intervals dqpending on the thiation** rats in the particular solvent (Fig. 1), subjected to paper

FIG. 1

Time Dependence of Yields of 4-Thiouracil-2-¹⁴C.

Solvent (0.3 ml) : \bigcirc dioxane; **O** pyridine; \bigcirc pyridine; **tetralin. Molar radio uracil** - **phosphorus pentesulfide: 01:2; 0)1:2; @1:4; 2:1.**

chromatography in the solvent system S_1 , and radiometrically **evaluated.**

The radioactivity dietribution on paper chromatograms waa determined on an automatic device having two GM counters with thin end windows in the 4π geometry (Frieseke Hoepfner, German **Federal Republic). Molar apecific activities were determined by meane of a spectrophotcmeter (Model SF** - **4, Soviet Union) and Tri-Carb liquid scintillation epectrometer (Model 3375; Packard, U.S.A.),**

The radiometric detection of **the subatance labelled** simultaneously with ¹⁴C and ³⁵S was effected by semiconductographic processes⁽¹⁴⁾using silicon semiconductor detectors **developed in this Labcratory(15) and making poeeible a eimultaneous non-destructive determination of both radionuclides in a two-channel device (l6,l7) ("carbon" channel, 9-156 keV;** " **s~lfur" channel, 160-170 keV)** .

FfEESULTS **AND DISCUSSION**

The results of model experiments (Fig_o 1) are expressed as a plot of the 4-thiouracil-2-¹⁴C yield on the time of the **reaction in the particular aolvent.** *The* **best yield** of **the** reaction was obtained in dioxane (Fig. 1, curve 1). As early **a8 after** *50* **minutes refluxing, the reaction mixture contains the maximum yield (96.6%) of the product thiated at position 4, while the proportion of the eubeequent thiation at position 2 is almost negligible (1.7% of 2,4-dithiouraci1-2-l4C). The time dependence of the composition of the reaction mixture ie** shown in Table I.

The reaction courae in pyridine a8 solvent was exmined

TAELE **I**

Time Dependence of the Composition of Reaction Mixtures in Dioxane as Solvent

Dioxane, **Oe3 mlo** The ratio uracil - phosphorus pentasulfide, 1:2. U, uracil-2-¹⁴C. 4-TU, 4-thiouracil-2-¹⁴C. 2,4-DTU, 2,4-dithiouracil-2- $^{14}C_{\bullet}$

with the use of two different ratios of reactants (Fig. 1, curves 2 and 3). Also in this case, the extent of the additional thiation at position 2 is **low** (only 4.7% of the dithio derivative is formed with the molar ratio 1:4 of uracil to phosphorus pentasulfide). On the other hand, the yields of 4-thiouracil are in pyridine considerably lower than in dioxane even with the use of a fourfold molar excess of phosphorus pentasulfide (74.2% of 4-thiouracil). Moreover, the preparative application of the pyridine procedure on a microscale is

considerably complicated by the isolation of the isoluble tarry thio derivative from the reaction mixture.

As it is known from earlier papers⁽¹¹⁾, the thiation in tetralin is not selective, being accompanied by the additional thiation at position 2. Thus with the ration 2:1 of uracil to phosphorus pentasulfide, the maximum yield of 4-thiouracil (40.9%) is obtained when the reaction time is one hour (5.3% of the dithio derivative is formed in the side reaction). Additional refluxing resulta in decreaaing yields of 4-thiouracil in favour of 2,4-dithiouracil (Fig. 1, curve **4).** A higher proportion of phosphorus pentasulfide in the reaction mixture leads to **a** quantitative formation **of** 2,4-dithiouracil (after **30** min of refluxing with the ratio 1:1 of uracil to the pentasulfide).

In the preparation of 4 -thiouracil-2- 14 C, there was used 0.50 mg (4.45 micromol) of uracil-2- 14 C (55.4 mCi/mM; radiochemical purity 99%, as determined by thin-layer chromatography), 200 **mg** (8.9 micromol) of phosphorus pentasulfide, and **Oe3 ml** of dioxane. The reaction mixture waa refluxed for one hour, transferred into a flaek and coevaporated to dryness with 5 ml of 0.1% aqueous ammonia. The residue was dissolved in water **(1** ml) and the solution subjected to **aolumn** chromatography (Fig. 2). The 4-thiouracil-2-¹⁴C-containing fractions were combined and evaporated to dryness. The residue was coevaporated with three 5 ml portions of methanol to remove traces of triethylammonium hydrogen carbonate. The radiochemical purity was 99.6%, as determined by two-dimensional thin-layer chromatography. Yield, Oe37 **mg (3.,30** micromol; 74%) of 4-thiouracil-2- 14 C (55.4 mCi/mM); ultraviolet absorption maximum

FIG. **2**

Record of the Separation of a Mixture of Uracil and its Thioderivatives on a Chromatographic Column.

Model mixture: Am₁ absorbance; Am₂ radioactivity; actual reaction mixture: Ap₁ absorbance; Ap₂ radioactivity. (pH 7): 330 nm. The identity of this substance was confirmed by comparison with inactive 4-thiouracil on paper chromatography in the solvent systems S_1 , S_2 , and S_3 .

The thus-obtained 4 -thiouracil-2- 14 C was used for the preparation of 4-thiouraci1, simultaneously labelled with

Micro-Preparation of 4-Thiouracil ^{14}C *or* ^{14}C + ^{35}S **343**

the radionuclides ¹⁴C and ³⁵S_o Thus, a mixture of 4-thiouracil-2-¹⁴C (100 *p*Ci; 55.4 mCi/mM), dimethylformamide (1.0 $ml)$, and elemental sulfur- ^{35}S (1.5 mCi; 2.6 mCi/g) was **heated at 155 OC for two hours, allowed to cool, and paper**chromatographed (descending technique) in the solvent system **S2. Elution afforded 4-thio-35S-uracil-2-14C, which was then** purified by column chromatography. The thioderivative-contain**ing fractions were evaporated and the residue taken down with three 5** ml **portions of methanol on a rotatory evaporator to remove traces** of **triethylammonium hydrogen carbonate to afford** 1.2 μ mol of 4-thio-³⁵S-uracil-2-¹⁴C, (55.4 mCi ¹⁴C/mM; 52.0 mCi ³⁵S/mM) in 66.8% yield; the radiochemical yield of the **exchange was 69%. "he identity of the substance waa confirmed by comparison with an authentic specimen of inactive 4-thio**uracil on paper chromatography in the solvent system S_1 , S_2 , and S_{3e}

ACICNOWLEDGEbfENT

This study was carried out within the framework of Research Project No. P09-159-003-04-6, partly financed by the Czecho**slovak Atomic Energy Commission. The authors wish to thank** Dr. A. Holy for valuable discussions and Mr. B. Pavlů for **technical assistance.**

REFERENCES

1, Fox J.J., Van Praag D., Wempen I. , **Doerr I.L., Cheong La,** Knoll J_eE_e , Eidinoff M.L. Bendich A., Brown G_eB_e -**J.** *he* **&em. SOC.** *g,* **178 (1959).**

344 J. Seda, L.I. Votmba and R. Tykva

- **2, Wempen I., Duechinsky Re, Keplan L., POX JoJo Jo Ammo** Chem. Soc. 83, 4755 (1961).
- **3. Ikehara M., Ueda T., Ikeda K. Chem Pharm.** Bull. (Tokyo)
<u>10</u>, 767 (1962).
- **4, Saneyoshi Y, Chem. Pham. Bull. (Tokyo)** z, **1400 (1968).**
- 5. Mizuno Y., Ikehara M., Watanabe K.A. Chem. Pharm. Bull. **(Tokyo)** *x,* **647 (1962)e**
- **6. Ueda T., Iida Ye, Ikeda** *16,* **Mizuno Yo Chem. Pham.** Bull. **(Tokyo) 16, 1788 11968).**
- 7. **Lipsett Y.N. J. Biol. Cheme** *z,* **3975 (1965).**
- **8. Nishimura S.: Progress in Nucleic Acid Research and Molecular Biology** *12,* **49 (19721,**
- 9. Koppel H.C., Springer R.H., Robins R.K., Cheng C.C. -**Synthetic Proceduresin Nucleic Acid Chemistry, Volume 1, Interscience, New York 1968, pe 90.**
- **10. Fieser L.F., Fieser M. Reagents** for **Organic Synthesis, Wiley, New York 1967, p. 320.**
- **11. Brown DoJo, Harper JeSe J. Chem, SOC.** 1961, **1298.**
- 12. Morávek L., Kopecký J.J. Collection Czechoslov. Chem. Communs. 34, 4013 (1969).
- **13. Tykva R., ariinberger D. &em listy** *2,* **732 (1965).**
- **14. Tykva Re Advances in Physical and Biological Radiation Detectors, International Atomic Energy Agency, Vienna 1971, pe 211.**
- 15. Tykva R. Excerpta Medica, Int. Congress Series 301, **455 (1973).**
- 16. Tykva R., Pánek V. Radiochem. Radioanal. Letters 14, **io9 (1973).**
- **lTe Tykva Re, Votruba I,: J. Chromatography, in the press.**